

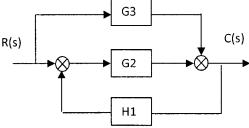
P-003-027501

Seat No.

M. Sc. (ECI) (Sem. V) (CBCS) Examination May / June - 2018

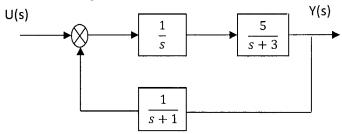
Paper - 17: Basic Concepts of Control Systems

Faculty Code: 003 Subject Code: 027501


Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

- 1 Answer the following questions in brief: (any seven) 14
 - (1) Define controlled variable and manipulated variable.
 - (2) Find inverse Laplace of the function given as:


$$F(s) = \frac{s^2 + 4s + 3}{s(s+1)}$$

- (3) For a given function, $F(s) = \frac{1}{(s+1)}$ find its final value at $\lim_{t\to\infty} f(t)$.
- (4) Find Laplace transform of the function given as : x' 4x = 0
- (5) Explain derivative control action with help of necessary equation and graph.
- (6) Briefly explain the block diagram of a closed loop control system.
- (7) Describe PI (Proportional-Integral) control mode in brief.
- (8) Briefly explain partial fraction method of inverse Laplace transform with MATLAB.
- (9) Reduce the block-diagram to minimum:

(10) Define a $2^{\rm nd}$ order system with help of appropriate examples.

- 2 Attempt any two of the following questions:
 - (1) Derive the mathematical model of a thermal system.
 - (2) Derive the mathematical model of an electrical system comprising of a series RLC circuit.
 - (3) Explain the unit-ramp response of first order system with necessary equations.
- **3** Answer the following questions:
 - (1) Explain how a non-linear mathematical model can be approximated to linear.
 - (2) Derive state space representation for the system in the block diagram.

- (3) Explain impulse function in detail.
- 4 Answer the following questions:
 - (1) Explain non-linear systems. 5
 - (2) Explain various transient response specifications with necessary diagram. 5
 - (3) Obtain the transfer function, for a system defined by 4 following state-space equations:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

OR

- 4 Answer the following questions:
 - (1) Derive the Laplace transform for ramp function.
 - (2) State and prove the real differentiation and final value theorems. 5
 - (3) Describe any two Laplace transform theorems with a necessary derivation.

5

14

4

- 5 Answer any two of the following questions:
 - (1) Explain partial fraction method to find inverse Laplace transform. Also derive the inverse Laplace of $\frac{s^2 + 2s + 6}{(s+1)^3}$
 - (2) Mention and explain all rules to manipulate block-diagrams.
 - (3) Derive the transfer function for a liquid level system.
 - (4) Describe the state space representation of a dynamic system.

14